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0~ WAVE EXCITATION BY A VIBRATING STAMP IN A MEDIUM 
lIITH INHOMOGENEOUS INITIAL STRESSES* 

I.V. ANAN'EV, V.V. KALINCHUK and I.B. POLI.AKOVA 

One possible means for studying the features of excitation of aninhomogeneousmedium 
with inhomogeneous initial stresses by an oscillating stamp is proposed (the mech- 
anical parameters of the material of the medium and the initial stress tensor com- 
ponents are arbitrary, sufficiently smooth functions of one of the coordinates, the 
depth of the layer, the radius of the cylinder). The approach heing developed to 
study inhomogeneous prestresses media is realized in the solution c,f the problem of 
the oscillating of a stamp on a lyer surface and the problem of the vibration of a 
stiff belt on the surface of an infinite circular cylinder. Integral equations are 
derived to whose study the solution of both problems reduces, and the properties of 
the kernels are investigated. The single-valued solvability of the integral equa- 
tions in a certain class of functions is shown. The influence of the properties cf 
the material of the medium and of the nature of the 
on the contact stress distribution under the stamp, 
surface outside it is investigated numerically. 

Analogous problems are examined in /1,2/ on the basis of 
wave propagation /3/ under the assumption of initial isotropy 
of the initial stresses. 

change in the initial stresses 
and on the behavj.or cf the free 

a linearized theory of e;aseic 
of the mediilm and homogeneity 

1. The problem of exciting an elastic medium with initial strains (in the absence of mass 
forces) is described by the relationships /4/ 

V.@=pu”, N.@=q; e=P+'/?(T.e-e.T)-T.Q (1.1) 

Here (J is the density of the material in the medium u = {u,, 4, US), 9 = (pl, q2, es} and 
N = {N,,N,,Ns} are, respectively, the displacement, surface force, and normal vectors to the 

surface. The initial stress tensor T and the symmetric e and skew-symmetric Q strain tensors 
take part in representing the tensor-of second rank 8. The symmetric tensor P depends only 
on the properties of the material and in the case of small initial strain can be represented 
in the form /5/ 

P(e)=Itre.E+$ 

Here E is the unit tensor, and h and p are Lame parameters. 
We rewrite the equation and boundary condition (1.1) in the form 

(1.2) 

Here si, are the initial stress tensor components, eke1 ks 52 are the symmetric and skew- 

symmetric strain tensor components, Tka are the stress tensor components related tothe strain 

tensor components by the above-mentioned dependence, 
Assuming oij = 0, ifi, i,i = 1,2,3,we obtain the following form for the components of the 

tensor 8: 

auk aus 
@k, = aksx + bk, q t  k#s 

s 

(1.4) 

-- 

ah = P (1 - uk - us,), b,, = ~(1 + 3u, - 0,). k # s 
(Jk = e,,i(4FL); i, j, k, s = 1, 2. 3 
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2. Let us consider the plane problem of the vibration of a rigid stamp of width 2a on 
the surface of a layer occupying the domain 1x1 1, 1% I< ~,O<ZS <hh. Assuming the coeffic- 

ients A, p, aSsr b,, in the representation (1.4) to be functions of 5, and applying theFourier 

transform in rI to (1.2) (a is the transformation parameter, and u,, u, are Fourier trans- 

forms of the functions n1. us), by using the notation U ,' = y,, -iaU,' = y,, U1 = ya, -iaU3 = y, 

we arrive at the system 

Y,' = &I-' I- bsl'Y, + [(A -t 2~) a2 - po21 ~3 - h’y, - @ i- ~3,) y2) 

Y 2' = (h + 2~)-' [a" (h + a& Yr - (h' + 2~') y, + a%'y,+ (a2bls - po2) ~41 

(2.1) 

YS ’ = Y,, 

Proceeding in an 

Y,’ = Y2 

analogous manner, we reduce the boundary conditions (1.3) to the form 

zs = h, bslY, + ~31~4 = 0, -alLya + @ + 2pj br2 = Q (4 (2.21 

23 = 0, y, = y, = 0 

(Q(a) = - iaTs(a) is the Fourier transform of qs(zl)). 
For a further analysis it is necessary to have four linearly independent solutions of 

the system (2.1). They can be obtained numerically by the Runge-Kutta, Adams, etc. methods, 
say /6,7/. Let us assume that these solutions with the initial conditions Yi, (8) = & are 
constructed and have the form 

Then the solution of the problem under consideration can be written in the form 

Ui trlt 5) = Y& s kb E--l)q(E)dg, i=I, 3 

k (a, t) = S K (a:“z3j e*a* da 
r 

(2.3) 

(2.4) 

(2.5) 

K (~7 4 = lA,Yil (4 - A,Y~,, (41/A 
A, = bal (h) ilk (h) + aal (h) y&h), k = 1, 2 

A = P. (h) + 2~ WI 1~22 (W A, - ~$1 (It) 41 - 

a% (h) IYS’~ (4 -4, - ysl (4 41 

(2.6) 

The right side of (2.4) governs the displacement of an arbitrary point of the layer sub- 
jected to the load qS(zl) given in [--a,~). Setting a=h in (2.4)-_[2.6),we obtain the 
layer surface displacement determined by the relationships 

a 

u*O (q) = & 1 k” (E - 4 q (8 d& (2.7) 

k’(t) = S P (a) et=* da, K”(u) = K (a, h) (2.8) 
r 

The contour Tin the representations (2.5) and (2.8) is selected in conformity with rules 
elucidated in /8/, except after a numerical analysis of the properties of the function K"(a). 
In the case of the problem on the action of a stamp on a layer surface, the relationship (2.7) 
is an integral equation in the unknown function q(E). 

3. The evenness and meromorphism of the function K"(a) are determined from the form 
of the analytic dependence of the coefficients of the differential equations (2.1) on the para- 
meter a. The presence of real zeros and poles and the nature of their distribution can be 
determined only upon having the specific form of the functions ~(z~),~(z~), p(z&a(zs) given. 
The asymptotic behavior of K”(a) as a+m plays an important role. 

The kernel of the integral equation is constructed numerically as the solution of the 
boundary value problem (2.1), (2.2); hance it is natural to identify the asymptotic of the 
kernel with the asymptotic of the corresponding boundary operator. By using the notation 

g1 = - ie2y,, g? = icy,, q3 = icy,, g, = - iys 

e=a+, a,= - (h + adi(h t- 214, as = - b,d(h + 2~) 
aa = (h + adlb~,, a, = - (1 + 2p)lbS, 
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we reduce the problem (2.1), (2.2) to the form 

eg,' = a,gt- 0. + W-l [(h' + 2Y') Egl 7 (b,8 - pcl%) g, - &h'k] 

sg,' = a3gl - 4,-l [e&'gz f ((h. + 2u) - po*c*)g, + ea31’g31 
egs’ = -gl, eg,’ = -g2 

zs = h, bslg, -I- aa,g, = 0, (h f 2~) g, - kg, = - e 

23 = 0, g3 = g, = 0 

The system (3.1) 

Let us construct 
(3.1) that the matrix 

where 

The eigenvalues 

can be written in matrix form 

eG’ = A (z, e) G, z ZE z3 

the asymptotic solution of this system. It follows from the form of 
A(z,e) allows expansion in a power series in s 

A@, E)- kiAk(r)e”, E-S-O (3.3) 

II 0 ai as 0 II 
Ao (4 -7 0 0 Q - 

0 0 0 

II 0 -1 0 011 
of the matrix A,, 

q1.p = (- P f (PZ - m% qs+, = - t-p f (P’ - #lr)Lirv (2p= -+a3 + a2 + ad. c = b13/b8J 

are distinct. 
form 

where a#) is 
corresponding 
and right for 

is introduced 

(3.1) 

(3.2) 

(3.4) 

The asymptotic solution of the system (4.1) is written in this case in the 

gj tzv 8) - $,a’ ($ ass’ (2) exp ($5 qi (t) dt)) 
r-0 1 0 

(3.5) 

to be determined from (3.1) and (3.2). We shall substitute particular solutions 
to the distinct qt alternately into (3.1) and equate expressions on the left 
identical powers of e. If the matrix 

Y 
aa 0 

I 
qi -a1 - 

B(i)(z) = y -ii O Q 
qi O 

0 1 O Qii 

into the consideration, then we obtain for r=O /9/ 

a;J=ci$;; (3.6) 

Here Bkj(i)is the cofactor of the element b,, of the matrix B(')(Z), and ciO are constants to 

be determined. The left sides of (3.6) are determined by the formulas 

a$ = - cio (qi3 -a&, (i) a?o = cioqi*a4 (3.7) 

a,,@) = cl' (qi” + a4), aso ($1 = _ ci”qiaa 

where the expressions in parentheses on the right are evidently not zero for all Uj"'". The 

boundary conditions (3.2) are represented by the expressions 

I 
X ciosnci) = 0 , n=l, 2, 3,4 (3.8) 

i-l 

,Q) = B,,(i) (0), sl(i) = Blaci) (0) 



411 

Since det 11 s,,(~) /j # 0, i,n = 1,2,3,4, then it is necessary that cio = 0, i = 1,2,3,4, and 

theretire, 0,jP' G 0. In this case the boundary conditions have the form 

1, n-2 

0, 
,L+2, detII~‘R#O 

Then /9/ 

(i) det 11 s”) 11. R 1 
Co = det@II 

Taking into account (3.7), (3.5) and (3.8), it can be concluded that as E--t0 all the 

gW(z, E) will be uniformly bounded in E. For r=2 the corresponding system becomes inhcmo- 

geneous (the terms &o(z)) are present in the right sides). Since the rank of the system 

matrix is three, as before, then the coefficients a,,(*)(z) (i = 2,3,4) can be expressed /lO/ 
in terms of am(*)(z). In turn, the coefficient a,,(')(z) is represented by virtue of its holo- 
morphism for z = h /lo/ by the series 

(3.9) 

Substituting (3.9) into (3.8) and collecting coefficients of identical powers, we obtain 

a homogeneous system to determine the c$) which is similar to (3.8). Its determinant is al- 
so different from zero, from which it follows 

ck(i) 5 0; i = 1, 2, 3, 4; k = 0, 1, 2, . . . 

For values r> 2 the discussion is analogous to that for the case r = 0 since the Co- 
efficients for Pi are zero. We obtain 

gj (Z, .5) - c0nst.q E + 0 
Then 

u3 _ constia, a+ 00. 

4. TO study the influence of the initial stress on the wave process excited in a pre- 
stressed layer, we took the following dependences of the elastic parameters and the initial 
stresses on the coordinates as an illustration: 

h (2) = )i,h (1 + a)/(~ + ah), P (4 = wok (1 + t%& + @) (4.1) 

~(z)=p,exph'(h--)I. D (2) = cr@ exp [6 (h - z)l 

or 
h(z) = ho exp [a (h - z)l, P (I) = p. erp IB (h - r)l (4.2) 

P (2) = 9" exp Iv (h - 41, (I (z) = a,h (f + 6)/(z + &I) 

An analysis showed the absence of qualitative distinctions in the pattern of zero and 
pole distributions for the function s"(a) as the initial stresses and the elastic character- 
istics of the medium varied according to the laws (4.1) and (4.2), and the pattern presented 
in /1,2/. Only certain quantitative changes were observed. Here and below, the computations 
were carried out for the values h, = 926.105 N/m2, pa = 775.10s N/m2, p0 = iO* kg/m3, so = iOJpo, 
n=8=9.5 and b=s=i. 

For all values of o strict alternation of the zeros and poles holds. In combinationwith 
the properties noted above,the latter circumstance permits the conclusion /8/ that the problem 
of stamp vibration on a layer surface is solvable single-valuedly for any right sides of (2.7) 
in the class of functions that are continuous with weight in [--(~,a]. 

Let us approximate the function P(U) by the function /8/ 

K*(U) = Cl(u?+ P)-"* fi (I$ - &.*)(ua- &a)-1 
k=I 

(4.3) 

Here c1 and B are approximation parameters,Yk (k= 1,2,...,m), ck(k= 1,2,...,Q are real 
zeros and poles of the function K' (u), the remaining Yk (k = m + I, . . ., n) and & (k = m, + 1, . . ., n) 
are determined from the condition of the hest approximation. 

The form of the functions p (zI),Izl / < and US(Z~),\Z~\>~ determining the constant stress 
distribution under the stamp and the beha ior of the free surface of the medium in the case 
u~(IT~) = elrp(inr,)()r,lgn) and the approximaling function (4.3) in different forms can be found 

in /S,ll-13/. 
Let 7us use the notation 
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Graphs of the functions 11 and 8 are presented in Figs.1 and 2 for 00 = 0, 5~10-(~'o and 
5.10-3~~ (curves 1,2,3 , respectively) when the elastic parameters LP,P and B are described 

by (4.1) (solid curves) or (4.2) (dashes). 

Fig.1 Fig.2 

Computations were performed for the above-mentioned values of the parameters il,,~,,,po,~,~, 
rl. YY 6. The stamp half-width is a=3,o=5.~ Hz. 

The numerical analysis shows that a change in initial stress intensity exerts substantial 
influence on the contact stress distribution and the free surface displacement, where it is 
strongest at inflection points of the functions g(zI) and US(+). For different laws of initial 
stress and elastic parameter variation for the medium the contact stresses and the free sur- 
face displacement are distinct: however, the nature of the initial stress influence remains 
qualitatively as before. 

5. The problem of the radial vibration of a rigid 24 wide belt on a cylinder surface 
r<S,Iz(<ca with initial stresses and elastic characteristics of the material varying along 
the radius is described by a system of equations with the boundary conditions 

(5.1) 

(5.2) 

(.I, 4 are the radial and axial displacements). 
Applying the Fourier transformation in z and introducing the notation 

v; = y1, rev,' = y*, v, = p, rcrv, = ?& (5.3) 

(V,,V, are the transforms of the functions I+ and ~3, we arrive at a system of four first- 
order differential equations of the type (2.1) and (2.2) from the system (5.1). Further con- 
structions do not differ qualitatively from those in Sects.2-4. The integral equation of 
type (2.7) obtained was investigated by numerical methods. its solvability in the class of 
functions mentioned in Sect.4 was established. Using (4.3) as the approximating kernel of the 
integral equation, we obtain the possibility of using the results in /8,12/ to determine the 
form of the functions gr(z),lzl <a and +(z),(z[)u that yield the distribution of the contact 
stresses under the belt and the behavior of the free surface. 
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Even in this case changes in the initial stresses influence the wave process in the 

cylinder substantially. Utilization of different laws also results in significant changes in 
the quantitative characteristics of this process. 

The authors are grateful to V.A. Babeshko for attention to the research and for discus- 
sion of the results. 
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